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1.      Introduction   

 

  Throughout all the history, the thinking person is engaged in optimization, 

i.e. finding the minimum value of some quantity: the area of land, energy, profits, 

and cash costs. Nowadays variational methods are one of the most powerful tools 

for analyzing a wide variety of intensive problems. More intensively these 

methods have been used in the optimal design problems. The interest to these 

problems has increased due to the rapid development of aviation and space 

technology, shipbuilding, where it is essential to solve the structural weight 

reduction without compromising its strength and aerodynamic properties [1, 3, 5]. 

The main method of proving the existence of solutions and finding of the 

solution of a certain variational problem was the reduction of this problem to the 

question of the existence of solutions of the differential equation (or system 

differential equations). However, this method sometimes does not lead to the 

desired results. Its application is further complicated by the fact that for the 

solution of the variational calculus problems it is required to find solutions of the 

corresponding differential equations are not in a small neighborhood of a point, 

and in a fixed domain on the border of which the desired solution must satisfy 

certain boundary conditions. The arising difficulties forced to find new so-called 

direct methods [3, 6]. 

The development of direct methods of the calculus of variations has been 

useful not only for variational problems, but also for other areas of mathematics; 

in particular, they are widely used in the theory of differential equations [2,3]. 

If the differential equation can be considered as the Euler equation for some 

functional and if it is determined that the original equation has a solution 

satisfying the boundary conditions corresponding to the problem then one can 

mailto:subhiya.zeynalli@rambler.ru


S.M. ZEYNALLI, S.V. ABBASOVA: APPLICATION OF VARIATIONAL CALCULUS … 

 

 
69 

 

make the following considerations. As is shown below, the direct methods of 

variational calculus give an opportunity not only to prove the existence of a 

solution, but actually find it with any degree of accuracy. 

There are many different methods united under the general name "direct 

methods". One of the most used of them is the so-called Ritz method considered 

below. However most of these methods are based on the same general idea, which 

is as follows [2, 4]. 

Particularly, let’s consider the problem of finding of the minimum of some 

functional     , defined on some class   of admissible curves. In order to this 

problem has a sense we assume that there exist the curves in the class   such that  

        and  

             .                                               (1) 

In this case by the definition of the sharp lower bound, there exists a 

sequence               called a minimizing sequence such that 

   
   

                                                                       

If there exists a limit curve      for this sequence {yn} and if the passing to limit  

           
   

                                                                 

is valid, then  

                                                                          

i.e. the limit curve       would be a solution for the considered problem. 

Thus, the solution of the variational problem by the direct method consists 

of 

1) construction of the minimizing sequence {yn}; 

2) proof of the existence of the limit curve      for this sequence; 

3) proof of the legitimacy of the passing to limit (3). 

The members of the minimizing sequence can be considered as the approximate 

solution of the corresponding variational problem.   

 

2.    Some preliminary facts 

 

1. Construction of the minimizing sequence is obviously always possible unless 

          . Each of the direct methods used in the calculus of variations is 

characterized, in fact, by the way of constructing of the minimizing sequences. 

2. While minimizing sequence can be constructed in any variational problem, 

limit curve of such a sequence may not be exist.  As an example consider the 

functional  

                                

 

  

 

that takes positive values and  

         . 

As a minimizing sequence here the following sequence of functions may 

be taken  
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Really, 

       
     

               
 

 

         
  

 

  
      for       

But the sequence (4) in the class of continuous functions, satisfying the boundary 

conditions                 has no limit.  

The question of the validity of the limit passing (3) under the existing 

assumption of the limit of the minimizing sequence (if     means the 

convergence only the functions without their derivatives) for the functionals, is 

not trivial, as functionals considered in the calculus of variations, generally 

speaking, are continuous in the metric of C, and hence, the value of the functional 

J for the function               generally speaking, is different from      
               

In some cases justification of the limit passing (3) may be done by the help 

of the following considerations.  

For the validity of the equality (3) the continuity of the functional       is 

not necessary, and its lower boundedness is enough.  

Actually, then  

           
   

                                                                 

and from the other hand due to lower semi-continuity for large enough  n, 

                
From this at  n→∞ we get 

           
   

         

i.e. due to arbitrariness of     > 0, 

           
   

                                                              

Thus from  (5) and (6) we obtain that  

           
   

      

if the functional  J  is lower semi continuous.  

 

3.   Ritz method and the method of polygonal  

 As mentioned above, the main so-called direct methods of the calculus of 

variations are the construction of minimizing sequences of functions. One of the 

known direct methods is Ritz method that consists of the followings. Let the 

following minimization problem is considered 

 J[y]→min .                                                      (7) 

The functional is defined on a manifold from some linear normed space Е. 

 Consider some sequence of functions  

                                                                    
from Е  such that the function and their linear combinations  
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are addmissible for the functional (7). The problem is: given n to choose the 

coefficients сk, k =1,2,..... n such that the value  

                                                                  
be as smaller as possible. This is a problem on finding of the minimum of the 

function of  n variables              , is too simple than finding of the minimum  

of the functional (7). Thus for each n we get that the corresponding minimum 

cannot raise i.e. 

        
since between the linear combinations of the first     functions contains all 

linear combinations of the first  n  functions. 

 Now let’s consider the problem: within what conditions one can state the 

obtained by this way sequence of the functions              is minimizing, i.e.  

   
   

     

is a minimum of the functional (7). 

Theorem.  If the functional (7) is continuous and the system of the functions (8) 

is complete then  

   
   

     

where    is a minimum of the functional (7). 

Proof.  Let у
*
 be a curve on the functional (7) reaches its minimum and some 

    be given. Since the functional (7) is assumed continuous then there exists 

 >0 such that   

                                                                 

as y-y* . Among the linear combinations of form (3) one can find such yn  

that  

-yyn . 

Then according to (11) 

  . nyJ
 

If now ny  is the linear combination on which the function (10) reaches minimum 

by given  п then  

    ,  nn yJyJ
 

From this by arbitrariness of   we obtain that  

  .


nyJ
n
lim

 
Theorem is proved. 

 This theorem is applicable for example, in the case when the functional 

type of  

dxуyxF

b

a

),,( 
 

is considered on some set belonging to   , since the functional of this type is 

continuous in this space.  
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4. Eigenfunctions and eigenvalues of the boundary problem for the  

          Sturm-Liouville operator 

          Consider the application of the direct methods of the variational calculus to 

the differential equations on the example of the following problem. Let the Sturm-

Liouville equation  

    y    =Qy+ 

yP                                        (12) 

and boundary conditions 

    .0 byay                                                  (13)                                                        

be given, where  x >0 has continuous derivatives. It needs to find the solution 

of the equation (12), satisfying conditions (13), and additionally define the values 

of the parameter , at the the problem has non-zero solution. 

 The equation (12) together with conditions (13) is called the Sturm-

Liouville boundary problem. The values of the parameter at which the equation 

(12)  has non-zero solution satisfying (13) is called eigenvalues and corresponding 

solution- eigenfunctions of the considered boundary problem. 

 For the boundary problem (12), (13) there exist infinite number of the 

eigenvalues               and to each    corresponds the only with the 

accuracy of constant factor eigenfunction.  

 Simultaneously with the proof of this fact we obtain a method for 

approximate determination of the eigenfunctions.  

 Note that the equation (12) is an Euler equation corresponding to the 

following conditional extremum problem: find the minimum of the functional  

    

b

a

dxQyyPyJ 2
                                           (14) 

within the condition   

 

b

a

dxy 12
                                                 (15)            

and (13) 

 To apply to this variation problem the direct methods we show first the 

integral (14) is lower bounded.  Since  P  x >0 then   

  ;2

 
b

a

b

a

dxQydxQyyP 22
 

But 

,MdxyMdxQy

b

a

b

a

 
22

 

where 

 .min xQM
bxa 

  

Thus the integral (14) really is lower bounded.   
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 Now we use Ritz method. For the sake of simplicity instead of the interval 

(a, b) we consider (0, π). Let’s take in this interval some complete system of 

functions {φn (x)} satisfying conditions (13), for example, {sin nx}. 

          Consider the possible linear combination of the first т functions of this 

system  

  



m

n

nm nxaxy
1

sin  .                                       (16)           

The functional (14) may be written in the following quadratic form  

  ,sinsin,...,,
0

2

1

2

1

21 dxnxaQnxaPaaaJJ
m

n

n

m

n

nmm  










































                 (17)                                    

and the condition (15) as follows 

  












0

2

1

1sin dxnxa
m

n

n  .                                 (18) 

The boundary condition are satisfied automatically due to the choice of the 

functions  φn(x) = sin nx. 

         Integrating by terms the left hand side of (18) we get 





m

n

na
1

2 .1
2


                                                   (19)            

This means that the quadratic form (17) to which the functional (14) is reduced on 

the set of the functions form of (16) is considered on the surface of the sphere in 

the m-dimensional space. By the Weierstrass (17) reaches on the sphere (19) its 

minimum in some point. Let as this point be              and 





m

n

nm nxay
1

.sin  

Putting        , we get the sequence of minimums  
    ,..., 1

2

1

1                                                     (20) 

of the corresponding quadratic forms. It is easy to see that   
   .11

1 mm                                                      (21) 

Actually,  

   0,,...,,... 11 mmm aaJaaJJ   

and adding one more argument can only decrease the minimum. From this and 

boundedness of the functional  J follows that there exists the limit  
   .lim 11  


m

m
                                                (22)                                                             

 Thus we proved the convergence of the numerical sequence   1

m  

consisting of the minimums of the functional   

  ,
0

2

 


dxQyyP 2

 
on the set of the function 
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


m

n

n nxa
1

sin  

at         

 Now it is natural to try to show the convergence of the sequence of the 

functions  

  



m

n

nm nxaxy
1

,sin

 
on which the corresponding minimal values are reached. First we show that the set  

  xym  
contains some uniformly converging subsequence.  

 For this purpose we how that the set of functions   xym  
is uniformly 

bounded equicontinuously continuous.  

 Really from the convergity of the sequence  

    




0

221 dxQyyP mm  

we show that the limit function satisfies the Sturm-Liouville equation (12). 

 The peoble is that in the integral  

                                                


0

22 dxQyyP
kk mm                                                 (23) 

We cannot pass to limit immediately at k→∞, since we have no information on 

the convergence of of the derivatives  xy
km
 . Therefore from the fact that for each 

k the function  xy
km  provide minimum for the integral (23) in the proper finite 

dimensional space we do not get that the limit function  y(x) gives minimum to the 

functional (12). To get around this difficulty, we prove the following lemma. 

Lemma. If for any function  (х) having continuous first and second derivatives 

and satisfying   the boundary conditions (13), the equality  

   ,0
0




 dxyL

 
is valid, where  

    ,1 QPL 

  

then у is twice differentiable and         
 Now we turn back to our main problem and show that the function y(x), 

that is a limit of the cobnstucted subsequence   xy
km  satisfies the equation (12) 

for λ being equal to  
 11 lim m

m



 . 

The point (а1,а2,…,аm) in which the quadratic form Jm reaches its minimum is 

defined according to the theory of the conditional extremum by the equation  
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 

   

 mk

dxkxnxaxQkxnxaxP

dxnxayJ
a

m

n

nm

m

n

n

m

n

nmm

k

,...,2,1

,0sinsinnsinsi

sin

0 11

0

2

1



























































 

 













       (24) 

Multiplying all these equalities by the arbitrary constants  m

kA and summing over 

k from 1 to m, we get 

    



0

1 0dxyQyP mmmmm ,                                (25)                                                    

where 

    .sin
1





m

k

m

km kxAx                                                 (26)                                                

 Let    be any twice differentiable function satisfying the conditions (2). 

Then the coefficients  Ak
(m)

 for any m=1,2,.... may be chosen such that 

.,,   mm m  

It follows from the last that      

    LL m       at   m . 

 Now suppose that in the inequality (25) that may be written in the form   

  ,
00

 



 dxydxyL mmmmm                                        (27) 

m varies as the sequence mk,  corresponding to the converging to the function у(х) 

subsequence   {ymk (x)}.  We can pass to limit in (27). This gives   

   
 




00

1 dxyydxL                                             (28) 

for the any continuously differentiable function  (х). Due to the proved above 

lemma and the last we obtain that у (х) has twice derivative and  

    .1 yyL   

Really, it is enough here to take  

     .1

1  xQxQ  

 Thus we showed that у (х) satisfies the equation (12). 

 We defined above у (х) as a limit of some subsequence {ymk(x)} of the 

sequence {ym(x)}. Let’s show that the sequence {ym(x)} also converges to у(х). 

For this purpose we use the fact that if  λ  is given the solution of the equation  

  yQyyP   

satisfying the boundary conditions   

    00  yy  

and norming condition  
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  



0

2 ,1dxxy  

is defined up to sign. Consider such a solution and let in the point  х0 this solution 

is differ from zero        . Choose the sign of      such that        . The 

sign of        is chosen such that  ym(x0)≥0 for all m. If {ym(x)} does not 

converge to у(х), then from {ym(x)} may be chosen the second subsequence 

converging to the solution of y (x) ≠ у (х). Due to the above mentionned 

uniquiness of the solution satisfying conditions  (13), y (x)=у(х), but then 

        , that is impossible, since         . Thus            , if onle to 

choose the proper sign of       . 

 We proved the existence of the function у(х), that we denote by y
(1)

(х),  

corresponding to one eigenvalue of the Sturm-Liouville equation. The next 

eigenfunction       and corresponding eigenvalue      
 
may be found as follows. 

We seek the minimum of the integral (14) subject to (13) and additional 

orthogonality condition  

      



0

21 .0dxxyxy  

Taking 

   



m

k

km kxbxy
1

2 sin  

we put this expression into the integral (14) together with у(х). We obtain new 

quadratic form We consider this form on the set of the functions of form 

,sin
1




m

k

k kxb  

satisfying orthogonality condition to the above constructed functions ym(x), and 

get  

.0sin,sin
11 0









 


dxnxakxb
m

k

n

m

k

k



                           (29) 

 The equality (29) presents the equation of the      –dimensional plane 

in the  m – dimensional space, passing through origin. Its intersection with the 

sphere defined by the condition (15) is a sphere of dimension    . On this 

sphere our functional (12) is reduced to the quadratic form. Applying  Weierstrass 

theorem we see that the quadratic form reaches on this sphere its minimum that 

we denote as   
   

. It is clear that   
   ,22

1 mm    
and since the functional  (14) is lower bounded there exists a limit  

   .lim 22

m
m





 

So,  

           
Constructing the sequence of the functions  
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    ,,...2,1sin
1

2 


mkxbxy
m

k

km
 

Each of which gives minimum to  2

m и and satisfies the orthogonality condition  

,0sinsin
1 10

 
 








m

k

m

n

nk dxnxakxb



 
we can show that this sequence uniformly converges to some limit function  

у
(2)

(х), satisfying the condition  

    ,2 yQyyP 

  

boundary conditions  

    ,00  yy  

normalizing condition 

  



0

2 1dxxy  

and orthogonality condition and  to у
(1)

(х): 

     



0

1 .0dxxyxy                                     (30)                                

 Thus у
(2)

(х) presents the eigenfunction for the equation (12), corresponding 

to the eigenvalue λ
(2)

. Since orthogonal functions cannot be linearly dependent 

and to each eigenvalue  λ corresponds the only eigenfunction, it is valid 

λ2> λ1. 

 Repeating the similar considerations we can obtain the eigenvalues 

        and corresponding eigenfunctions   у
(3)

(х),  у
(4)

(х),…  . 
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